Our research laboratory specializes in the numerical simulation of plasma aerodynamics. Plasmas used for flow control in aerodynamics are weakly-ionized “cold” plasmas which require little power to sustain in sea-level air. Weakly-ionized plasmas can improve the performance of aircraft either through Dielectric Barrier Discharge (DBD) actuators to increase the critical angle of attack of airfoils, to...

WARP (Weakly-ionized Airflow Resolver and Post-processor) is a in-house-developed C code that totals more than 50,000 lines and that is specifically tailored to simulate efficiently plasma aerodynamics. WARP is advantaged over other plasma aerodynamics codes in that it integrates in coupled form the electron and ion transport equations along with the “bulk flow” transport...

B Parent, MN Shneider, SO Macheret. “Detailed Modeling of Plasmas for Computational Aerodynamics”, AIAA Journal, Vol. 54 (3), Pages 898-911, 2016.

B Parent. “Positivity-preserving High-Resolution Schemes for Systems of Conservation Laws”, Journal of Computational Physics, Vol. 231 (1), Pages 173-189, 2012.

This is a third year undergraduate course about heat transfer phenomena. The course covers radiation, conduction in solids (steady and unsteady), external convection, viscous heating, internal convection, natural convection, and phase change. Example problems include the cooling of journal bearings, electricity cables, and the design of fins, hot wire anemometers, and hypersonic aircraft structural cooling systems....

Computational Fluid Dynamics (CFD) is a graduate course that focuses on numerical methods solving incompressible viscous flow. Some focus is given on deriving the most-commonly used turbulence models (algebraic, 1-equation, and 2-equation) and how to implement them within fluid flow solvers. Sources of numerical error are also outlined along with techniques on how to assess them accurately. The course ends with an...

Come relax in my skylounge, and check out some old pics when I was a bit younger (and perhaps cuter), some random opinion pieces I write in local newspapers, some recipes, etc.....

This is a second year course giving an overview of the basic concepts in fluid mechanics. The topics covered include fluid statics, inviscid fluid dynamics, viscous fluid dynamics, and non-dimensional analysis. Emphasis is put on the derivation of the governing equations of fluid mechanics (Pascal's law, mass and momentum conservation equations, Bernoulli's equation, skin friction coefficient, etc) and on how to...

Thermodynamics is a second-year course giving an introduction to gas and liquid physics. Topics include ideal versus non-ideal equations of state, the first and second law of thermo, conservation of energy using the control-volume approach, the Maxwell relations, gaseous mixtures, and chemical reactions. Example engineering problems include the analysis of pressurized tanks, air conditioners, and combustors....

Compressible flow is a third year undergraduate course giving an introduction to gas dynamics with applications to wind tunnels, turbojet and ramjet inlets, rocket nozzles, and supersonic airfoils. The topics covered include isentropic flow in ducts with area change, unsteady and steady normal shock waves, oblique shock waves, Prandtl-Meyer fans, frictional flow in ducts, and linearized potential flow....